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Executive Summary

Note: This sample report represents an example project created for demonstrative
purposes only. It is created as if delivered in 2019 (as the project starts).

Space Intelligence was contracted by Sample Client to conduct a baselining (i.e. pre-
commencement) assessment for Project X located in the Amazonas district of Brazil.
The assessment follows Verra’s VM0047 V1.0 methodology for Afforestation,
Reforestation and Revegetation (ARR). The project area extends across 4,029 ha, with
the project starting in 2019, and the project involved planting of the species
Schizolobium parahyba var. amazonicum. The project will follow the area-based
approach for ex-ante removals estimation.

Key findings

« ALOS-2 PALSAR-2 HV polarization (Horizontal transmit, Vertical receive)
was selected as the best performing remote sensing stocking index. This
was used to generate project and control plots for baselining.

* The ex-ante performance benchmark was estimated to be 0.0, which
suggests that there is no significant natural regrowth within the project
area and the increase in vegetation is solely due to the implementation
of project activities.

* The projected carbon dioxide removals predicted to be obtained by the
project in the first five years from the project start date in 2019 was
estimated to be 107,480 tCO2e.
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1. Project Background

This report showcases a comprehensive description of the baselining procedure for a
sample afforestation, reforestation, and revegetation project named Project X. The
project area spans 4,029 ha and is located in the Amazonas district in Brazil (Figure 1).
The project is established under Verra’s VM0047 VCS methodology for Afforestation,
Reforestation and Revegetation (ARR), and follows the area-based approach for
removals quantification, with project activities commencing in the project area in
2019. The historic reference period spans 10 years from 2009 to 2019, the data from
which is used during the project and control plot matching process.

The core project intervention involves the establishment of native trees (Schizolobium
parahyba var. amazonicum), implemented as part of a structured afforestation effort
aimed at restoring tree cover on historically deforested or degraded lands. The
species is chosen here for their rapid growth and carbon sequestration, and
availability of seedlings, in an area where rapid soil stabilisation and carbon capture
were seen as the priority, as opposed to creating a biodiverse landscape.
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/M Figure 1. The location of Project X within the Amazonas district in Brazil, alongside a zoomed in view of the
project areq, overlaid on an RGB satellite image. The CRS of the maps and layers displayed is EPSG:4326.
Source: © Bing.
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2. Project Baseline

Under VM0047, the project must utilise a dynamic baseline. Dynamic baselining, as
stipulated by the methodology, involves (i) selection of an appropriate remote
sensing stocking index, (ii) matching of project plots and control plots, and (iii) ex-
ante calculation of the performance benchmark based on this stocking index and the
plots.

The core project intervention involves the establishment of native trees (Schizolobium
parahyba var. amazonicum), implemented as part of a structured afforestation effort
aimed at restoring tree cover on historically deforested or degraded lands. The
species is chosen here for their rapid growth and carbon sequestration, and
availability of seedlings, in an area where rapid soil stabilisation and carbon capture
were seen as the priority, as opposed to creating a biodiverse landscape.

2.1 Project Stocking Index

Guided by scientific literature, we explored and tested a range of remote sensing
metrics with respect to their ability to predict Above Ground Biomass (AGB) in forests
near the project area. We used a synthetic set of 117 x 0.063 ha ‘forest inventory plots’,
actual single pixels taken from our CarbonMapper™ product run over the areaq, to
simulate a set of forest inventory plots. The radiometric remote sensing variable HV
backscatter from ALOS-2 PALSAR-2 was chosen as the best performing stocking
index against these field plots. The relationship between HV backscatter and AGB is
visualised graphically in Figure 2.

HV vs AGB with Quadratic Logarithmic Model
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2.2 Project and Control Plots

For the purpose of the sample project, the project forest inventory plots were chosen
as 30 randomly sampled patches of 0.25 ha (50m x 50m) across the project area.

A donor pool was defined around the project area as the region within a 100 km
radius that is similar to the project area with respect to categorial variables like
jurisdictional boundary, ecoregion, presence of other AFOLU projects, etc. The donor
pool for Project X is visualised along with the project area in Figure 3 below.
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M Figure 3. Donor pool, the area within a circle of radius 100 km and centred at the geometric centre of the
project area, overlaid on an RGB satellite image. The CRS of the maps and layers displayed is EPSG:4326.
Source: © Bing Satellite.

For each project plot, 5 control plots (50m x 50m) were statistically matched based
on how similar the control plots are to the project plot in terms of the stocking index
value and its historical trend. A total of 150 control plots were selected, as shown in
Figure 4. A step-by-step description of this approach is presented in Appendix 2.2.
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€ Figure 4. The project and control plots over the donor
pool. The CRS of the maps and layers displayed is
EPSG:4326.
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2.3 Ex-ante Estimates

The ex-ante estimates of carbon stock change, the performance benchmark, and
carbon dioxide removals are estimated from a growth model suitable for the project
scenario, and discounted by the performance benchmark value. If the background
growth of carbon, as assessed by the stocking index in the control plots, is similar to
that within the project plots, then the performance benchmark would be ~1 and the
project would generate almost no carbon credits. In contrast, if the stocking index
growth is much greater in the project than control plots, then the performance
benchmark is near zero and the project generates carbon credits equivalent to the
growth model.

2.3.1 Carbon Stock Change from Growth Modelling

The increase in carbon stock as a result of project activities is forecast using a growth
model for the native species that will be planted. A detailed description of the growth
model is presented in Appendix 2.3. The carbon stock change calculated from the
growth model for 5 years from the project start date is 126,448 tCO,e.

2.3.2 Performance Benchmark

The ex-ante performance benchmark is calculated as the ratio between change in
stocking index in control plots derived from the historic reference period using a linear
regression through time, to the change in stocking index in project plots calculated
from the growth model for Schizolobium parahyba var. amazonicum using another
linear regression through time. The ex-ante performance benchmark in this case was
evaluated to be 0.0 (or 0.0%) since the slope obtained from the linear regression,
which is the stocking index change in the control plots, was deemed not significantly
different from a 0 slope line. More details are provided in Appendix 2.4.
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2.3.3 Baseline Carbon Dioxide Removals

For the purposes of this sample report, we will assume that the leakage associated
with the project is 0. For a performance benchmark value of 0.0, an increase in carbon
stock of 126,448 tCO,e, and a 15% cumulative uncertainty attributed by the
methodology, the total carbon dioxide removals that the project is expected to
achieve is 107,480 tCO,e across the first 5 years from the project start date in 2019.

A positive value for carbon removals indicate that the project is expected to be
additional.
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Appendix 1. About Space Intelligence

Space Intelligence is a nature tech company based and registered in Edinburgh, UK.
We provide world class nature data and insights to support the development,
monitoring and independent due diligence of nature-based solution (NbS) projects
worldwide. We provide our services to large corporations (e.g., Apple, Shell, Equinor),
asset managers and NbS project developers and intermediaries (e.g., Climate Impact
Partners, Everland). We also provide data to support the activities of NGOs (e.g., the
Nature Conservancy, Wildlife Conservation Society, and the Biodiversity Consultancy),
national governments and other agencies (e.g., Verra).

Our high accuracy nature mapping data provides greater confidence and certainty
in decision-making in NbS project origination and investment. We achieve this level of
accuracy by employing processes developed by our co-founders who have a
combined 30+ years of experience in remote sensing. Our senior mapping team have
published more than 100 peer-reviewed papers on the use of satellite data for land
cover and biomass mapping and analysis.

Our remotely-sensed data and ecological expertise is used within our own machine
learning framework, which is locally calibrated to capture regional factors such as
national forests definitions, seasonality, cloud cover impact and more. We assess the
accuracy of our maps and their uncertainty in a statistically rigorous way, following
best practice as described in the scientific literature and international standards.

i&@@@@%@ﬁ@@%@
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Appendix 2. Methodology

VM0047 introduced a dynamic baselining approach which involves reassessing the
baseline at regular intervals of time to incorporate vegetative growth which would
have occurred in the absence of the project. This is achieved through the use of a
remote sensing metric, a Stocking Index (SlI), to derive the performance benchmark.
The performance benchmark is the ratio of the change in the SI within the control
plots to the change in SI within the project plots. The dynamic baselining approach
involves the reassessment of the performance benchmark at regular intervals by
monitoring the evolution of the Sl within project and control plots.

A.2.1Selection of a Remote Sensing Stocking Index

A Stocking Index (SI) is a remote sensing variable that can act as a proxy for AGB in
forest stands. A good SI has a strong relationship with AGB in and around the project
area. A poor S| will fail to accurately represent AGB, thereby increasing the risk of
detrimentally affecting the project’s crediting potential. VM0047 relies heavily on a
good SI for its dynamic baselining procedure. An appropriate Sl is selected based on
extensive literature review and rigorous testing with the objective to explore the
sensitivity and accuracy of the remote sensing variable to AGB in the project area.

For the selection of the SI for Project X, we investigated L-band radar datasets from
satellite programs such as JAXA’s PALSAR-2 ALOS-2,' and vegetation indices derived
from optical satellite programs such as NASA’s Landsat? and ESA’s Sentinel-2,° such
as NDVI and NDWI. The remote sensing variables obtained from these datasets that
were considered in the S| selection process included radar variables such as L-band
HH and HV, and indices derived from optical data such as NDVI and NDWI. While all of
these variables demonstrate correlation with AGB, some are expected to be more
suitable than others due to factors like the properties of the data variables
themselves, the limitations posed by tropical forests such as extensive cloud
coverage, confusion with grasses or shrubs, the forest type, and the project region.

For 117 points spatially distributed across the project area, we sampled our audit-
grade AGB maps created using Space Intelligence’s CarbonMapper™ technology for
AGB values, and also rasters of the remote sensing variables mentioned above. The
points were sampled such that a representative range of AGB values that is expected
from within the project area was obtained. The relationship between AGB values and
these remote sensing variables were then explored.

' https://www.eorc.jaxa.jp/ALOS-2/en/about/palsar2.htm
2 https://landsat.gsfc.nasa.gov
* https://www.esa.int/ Applications/Observing _the _Earth/Copernicus/Sentinel-2
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A quadratic logarithmic model that captures the relationship between the Sl and AGB,
chosen through experimentation and literature review?, was used to select the
stocking index by the evaluation of goodness-of-fit of the model to the data. The
quadratic logarithmic model used is described below,

o®’(HV) = a + b:In(AGB) + c(In(AGB))>?, (1)

where ¢° is the radar backscatter coefficient in decibels, AGB is the above ground
biomass in Mg ha™, and g, b and ¢ constants.

We selected the remote sensing variable that showed the best performance in terms
of goodness-of-fit metrics such as MAE and RMSE calculated on the inverse of the
model presented in equation (1). The inverse of the function described in equation (1)
gives AGB values corresponding to Sl values making the model easier to interpret. We
also made sure to select the variable that showed the best performance against
saturation at higher AGB values. Table A.2.1 below shows goodness-of-fit metrics for
the various remote sensing variables considered in the Sl selection process.

Vv Table A.2.1. MAE and RMSE values for the different remote sensing variables considered in the SI selection

process.
Remote sensing variable MAE (MG ha") RMSE (Mh ha')
HV 60.34 82.63
HH 71.46 96.56
NDVI 74.45 97.23
NDWI 75.33 99.90
Sentinel-2 Green band 93.23 17.34

In this instance, cross-polarized L-band radar backscatter was the best performing
metric tested with the least error associated with it in modelling AGB, with significant
correlation with AGB also as proven in scientific literature,®® HV backscatter values
plotted against the AGB values along with the quadratic logarithmic model is shown
in Figure A.2.1.

4 Mitchard et al. (2009) Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different
African landscapes, Geophysical Research Letters, 12:6637-6653. https://doi.org/10.1029/2009GL040692.

5 Bouvet et al. (2018) An above-ground biomass map of African savannahs and woodlands at 25m resolution derived from ALOS PALSAR, Remote
Sensing of Environment, 206:156-173. https://doi.org/10.1016/j.rse.2017.12.030.

6 Mitchard et al. (2012) Mapping tropical forest biomass with radar and spaceborne LIDAR in Lopé National Park, Gabon: Overcoming problems of
high biomass and persistent cloud. Biogeosciences 9:179-191. https://doi.org/10.5194/bg-9-179-2012.
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HV vs AGB with Quadratic Logarithmic Model
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A Figure A.2.1. HV backscatter values plotted against AGB values sampled from our carbon maps. The red line is
the quadratic logarithmic model fitted for HV vs AGB.

It is worth noting that the use of the audit-grade AGB map and the point-based
sampling approach is exclusively for the sake of the example project described in this
sample report. For an operational project, the AGB numbers on the X axis would come
from field measurements submitted to us by the project developer as stipulated by
the methodology, and not from Space Intelligence’s audit grade carbon maps. We
would then sample the remote sensing rasters for plots in the field data to obtain
mean value for the remote sensing variable per plot corresponding to the carbon
stock associated with the plot.

A.2.2 Selection of Control Plots

Once the project plots are selected, the selection of control plots (50m x 50m
squares) can be broken down into three main steps.

Step 1: Defining the Donor Pool

We define the donor pool as the area within a circle centred at the geometric centre
of the project area and of radius 100 km. It is essential to ensure that the donor pool
does not intersect with protected areas or pre-existing VCS projects, as required by
the methodology. In cases where we are unable to match sufficient number of control
plots from the donor pool defined in the first instance, we are allowed, as instructed
by the methodology, to expand the donor pool in 100 km radius increments, given the
donor pool stays within the project ecoregion. In practice, additional factors may be
considered when defining the donor pool.
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Step 2. Defining Matching Parameters for Pixel Matching

We select a set of variables that includes the SI and variables derived from the Sl as
parameters to match control and project plots. For Project X, we included the SI
values from three time points within the historic reference period as matching
parameters. The temporal trend of the SI across the historic reference period is
captured using linear regression performed on the Sl values across time. The slope,
intercept, and R-value from the regression are included as matching parameters.

Step 3. Selecting Control Plots

We run an iterative algorithm per project plot to select control plots. For every project
plot, we perform a systematic search across every pixel in the donor pool outside the
project area to choose k=5 control plots that are closest to the project plot in terms of
the multivariate Euclidean distance between the project plot and the control plots in
the space of the parameters described in Step 2. We then statistically evaluate the
match quality using the statistical metric Standardized Differences of Means (SDM)
between the project and control plots matching parameters. As recommended in the
methodology, we control that the calculated SDM is less than 0.25 between all project
plots and their respective control plots to ensure the quality of the matching. Figure
A.2.2 visualises the goodness of project and control plot matching using Principal
Component Analysis.

Project and Control Plot Matching Visualization Using PCA
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A Figure A.2.2. Using Principal Component Analysis, we visualised the relationship between project and control
plots in the feature space. Closer points represent similar plots with respect to the parameters used for
matching.
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A.2.3 Growth Modelling

A literature review was performed by Space Intelligence’s ecology team in order to
select a growth model suitable for the project scenario. The dummy Project X
assumes that the project activity involves planting of Schizolobium parahyba var.
amazonicum. The growth model chosen is a generalised logistic model,” which can
be applied uniformly across all plant species. It is characterised by a sigmoidal
growth curve, defined by an intrinsic growth rate, a carrying capacity and curve
shape parameter, which together represent the limitation of resources and
competition over time, capturing the essential growth dynamics of any plant species.
In this instance, it allows for the calibration of S. parahyba growth trajectory based on
literature-derived estimates.®

In particular, the carrying capacity reflects the upper limit of stand volume that the
site can support over time, given constraints such as soil fertility, water availability,
stand density, and competition for light and nutrients. It is not a fixed biological limit,
but it can be chosen according to the species of interest, as the value chosen
represents the result of the interaction between species-specific growth potential
and site-specific environmental conditions and constraints.

For S. parahyba a carrying capacity of 340.40 m*/ha is used. This value reflects the
expected maximum volume under moderately productive plantation conditions
typical of fast-growing S. parahyba stands in temperate or subtropical climates.

The intrinsic growth rate determines how quickly the volume increases from its initial
condition. Higher values of this parameter reflect more rapid accumulation of
biomass, particularly in the early growth phase. For S. parahyba, a value of 12.40 is
selected to represent the species’ capacity for fast juvenile growth and early stand
closure, particularly under managed conditions with minimal competition and
optimal spacing.

Finally, the shape parameter determines how sharply the growth curve transitions
from its initial slow phase to the rapid growth stage, and eventually towards
saturation. It controls the position of the inflection point - the time at which growth
rate is maximised - and the curve’s symmetry. Lower values result in a more gradual,
extended growth phase, while higher values produce a sharper rise and earlier
plateau. For S. parahyba, a shape parameter of 0.0661 is used, reflecting a relatively
fast transition from exponential to asymptotic growth, consistent with the species’
rapid early development and earlier onset of density-dependent constraints.

7Silva et al. (2021). Scientific paper giving growth rates - detail redacted here. Brazilian Journal of Biometrics, 39(1).
8 Castro et al. (2019). Scientific paper giving growth rates - detail redacted here, 43(1), Journal of Forestry, 22.
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The generalised equation for the growth model is as follows,

a

1+kre?Y (2)

v(t) =

where;

V(t) = The predicted volume of tree stems per hectare (m?/ha) at time t,

a = The asymptotic maximum volume, or carrying capacity, under assumed
environmental conditions (m?/ha),

K = The intrinsic growth rate coefficient,

B = The shape of the curve parameter.

The values specific to S. parahyba are applied to the equation, and the species-
specific growth curve is represented in Figure A.2.3.

Growth model for S. parahyba
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A Figure A.2.3. Predicted stand volume accumulation (m?/ha) over time for S. parahyba, using a generalised
logistic model. The curve illustrates a typical sigmoidal growth pattern, with rapid biomass accumulation
during the mid-growth phase and eventual saturation as the site approaches its carrying capacity.
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Conversion of stem volume to tCO,e units

Once the projection for stem volume growth over time is calculated for S. parahyba
at 5 years of growth (projecting 5 years forward from the project start date, which is
the typical length of a monitoring period), the result is converted to tCO,e with the
following formula,

tCO,e = V(t) * p* 0.47 * 53 * BEF* (1 +RS) * A, (3)

where:
tCO,e = carbon dioxide equivalent (tonnes),
V(t) = the predicted volume of tree stems per hectare (m3/ha) at time t,
p = wood density (Mg/m3),
0.47 = Carbon Fraction (CF) of dry biomass (IPCC)®,
=+ = ratio of molecular weight of carbon dioxide (CO,),
BEF = Biomass Expansion Factor from stem to total Above Ground Biomass,
RS = Root-to-Shoot ratio, used to calculate Below Ground Biomass (BGB),

A = total project area (ha).

The parameters used to convert stem volume to carbon dioxide equivalent for S.
parahyba is derived from the literature. The wood density chosen is 0.5 Mg/ms3,
consistent with values reported for 5-year-old individuals®. The BEF of 1.015 accounts
for the additional AGB components beyond the stem, such as branches and foliage,
following standard practices in biomass estimation for fast-growing S. parahyba. A
RS ratio of 0.052 is then used to estimate the BGB based on conservative values
reported for young stands under moderate site conditions. Both parameters are
sourced from the minimum values reported for 8-year-old plantations" and are thus
considered reasonable proxies for the 5-year-old stands assessed here, as the
change in value between these ages is minimal.

These parameters allow for the calculation of total biomass (AGB + BGB), which is
then converted to carbon using the IPCC default CF of 0.47, and finally to carbon
dioxide equivalent (tCO,e) using the molecular weight ratio of 3.

9 |IPCC (20086) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use. Chapter 4: Forest
Land. Prepared by the National Greenhouse Gas Inventories Programme, Eggleston, H.S,, Buendiq, L, Miwa, K,, Ngara, T. and Tanabe, K. (eds).
Hayama, Japan: Institute for Global Environmental Strategies (IGES). http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html.

10 Bonfatti Junior et al. (2023). Basic wood density, fiber dimensions, and wood chemical composition of [redated]. Revista Arvore, pp xx-yy

"Dalla Corte et al. (2015). Fator de expansdo de biomassa, razéo de raizes-parte aérea e modelos para carbono para [redacted]. Enciclopédia
Biosfera, [redacted]
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The total project area (A) of 4,092 ha is then used to scale the per-hectare estimates
to site-level carbon removal estimates. The estimated total biomass (AGB + BGB) for
5-year-old S. parahyba is around 18 Mg/ha, which is consistent with values reported
in the literature.””

A.2.4 Performance Benchmark

The ex-ante performance benchmark is calculated as the ratio of the stocking index
change in the control plots to the stocking index change in the project plots by means
of linear regressions, subject to the P-values associated with the slopes of the
regressions.

The stocking index change within the control plots is calculated as the slope of the
linear regression performed across time on stocking index values within the control
plots obtained from the historic reference period. There are 10 time points in the
historic reference period from 2009 to 2019 for Project X and the mean stocking index
value across all the control plots from all 10 time points is used in the linear regression.
Table A.2.2. presents the full summary of the linear regression. The summary shows
that the slope, which is the change in stocking index within control plots, is not
significantly different from a 0 slope line. This means that there is no significant trend
observed in the stocking index within control plots over the baseline period.

¥ Table A.2.2. Summary of the linear regression performed in order to calculate change in SI within control plots.
The change in Si within control plots is the slope of the regression line or the coefficient of Sl.

coeff std err t P>[tl o.025 Fo.075
intercept 192.47 6.72 28.64 0.000 177.27 207.67
Sl 1.765 1134 1.55 0.155 -0.804 4.335

The stocking index change within project plots is obtained from the growth model for
S. parahyba discussed in section A2.3. We use the growth model to project the
stocking index 5 years into the future from the project start year of 2019. Carbon stock
values for the years 2019, 2020, 2021, 2022, and 2023 are therefore calculated. A linear
regression is then performed on this set of values to derive the change in stocking
index within project plots. Table A.2.3. presents the full summary of the linear
regression. The change in Sl thus obtained within project plots is 1.79 and is highly
significant.

2 Ferraz Filho et al. (2018). Thinning regimes and initial spacing for [redacted]. Anais da Academia Brasileira de Ciéncias, 90, pp.255-265.
* Viera, M. and Rodriguez-Soalleiro, R. (2019). A complete assessment of carbon stocks in above and belowground biomass components of a
[redacted] plantation Forests.
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Vv Table A.2.3. Summary of the linear regression performed in order to estimate change in SI within project plots.
The change in Si within project plots is the slope of the regression line or the coefficient of Sl.

coeff std err t P>t To.025 To.e75
intercept 226.62 0.108 2097.66 0.000 226.32 226.92
Sl 1.793 0.036 50.259 0.000 1.694 1.892

Since the change in stocking index within the controls is not significant, the ex-ante
performance benchmark is stipulated by the methodology to be set to 0. This means
that the increase in vegetation within the project area is produced by the
implementation of project activities alone and not through any natural regrowth.
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